Cover of Isaev Alexey P Isaev, Rubakov Valery A Rubakov: Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications

Isaev Alexey P Isaev, Rubakov Valery A Rubakov Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications

Price for Eshop: 3300 Kč (€ 132.0)

VAT 0% included

New

E-book delivered electronically online

E-Book information

World Scientific Publishing Company

2020

EPub, PDF
How do I buy e-book?

616

978-981-1217-42-5

981-1217-42-4

Annotation

This book is a sequel to the book by the same authors entitled Theory of Groups and Symmetries: Finite Groups, Lie Groups, and Lie Algebras.The presentation begins with the Dirac notation, which is illustrated by boson and fermion oscillator algebras and also Grassmann algebra. Then detailed account of finite-dimensional representations of groups SL(2, C) and SU(2) and their Lie algebras is presented. The general theory of finite-dimensional irreducible representations of simple Lie algebras based on the construction of highest weight representations is given. The classification of all finite-dimensional irreducible representations of the Lie algebras of the classical series sn, C), so(n, C) and sp(2r, C) is exposed.Finite-dimensional irreducible representations of linear groups SL(N, C) and their compact forms SU(N) are constructed on the basis of the Schur-Weyl duality. A special role here is played by the theory of representations of the symmetric group algebra C[Sr] (Schur-Frobenius theory, Okounkov-Vershik approach), based on combinatorics of Young diagrams and Young tableaux. Similar construction is given for pseudo-orthogonal groups O(p, q) and SO(p, q), including Lorentz groups O(1, N-1) and SO(1, N-1), and their Lie algebras, as well as symplectic groups Sp(p, q). The representation theory of Brauer algebra (centralizer algebra of SO(p, q) and Sp(p, q) groups in tensor representations) is discussed.Finally, the covering groups Spin(p, q) for pseudo-orthogonal groups SOp, q) are studied. For this purpose, Clifford algebras in spaces Rp, q are introduced and representations of these algebras are discussed.

Ask question

You can ask us about this book and we'll send an answer to your e-mail.