Problem of Catalan
Price for Eshop: 1267 Kč (€ 50.7)
VAT 0% included
New
E-book delivered electronically online
E-Book information
Annotation
In 1842 the Belgian mathematician Eugene Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihailescu. In other words, 32 - 23 = 1 is the only solution of the equation xp - yq = 1 in integers x, y, p, q with xy = 0 and p, q 2.In this book we give a complete and (almost) self-contained exposition of Mihailescu's work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume a very modest background:a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.
Ask question
You can ask us about this book and we'll send an answer to your e-mail.