Scalarization and Separation by Translation Invariant Functions
with Applications in Optimization, Nonlinear Functional Analysis, and Mathematical Economics
Price for Eshop: 2520 Kč (€ 100.8)
VAT 0% included
New
E-book delivered electronically online
E-Book information
Springer International Publishing
2020
EPub, PDF
How do I buy e-book?
978-3-030-44723-6
3-030-44723-5
Annotation
Like norms, translation invariant functions are a natural and powerful tool for the separation of sets and scalarization. This book provides an extensive foundation for their application. It presents in a unified way new results as well as results which are scattered throughout the literature. The functions are defined on linear spaces and can be applied to nonconvex problems. Fundamental theorems for the function class are proved, with implications for arbitrary extended real-valued functions. The scope of applications is illustrated by chapters related to vector optimization, set-valued optimization, and optimization under uncertainty, by fundamental statements in nonlinear functional analysis and by examples from mathematical finance as well as from consumer and production theory. The book is written for students and researchers in mathematics and mathematical economics. Engineers and researchers from other disciplines can benefit from the applications, for example from scalarization methods for multiobjective optimization and optimal control problems.
Ask question
You can ask us about this book and we'll send an answer to your e-mail.