Cover of Ruth Hummel, Elizabeth A. Claassen, Russell D. Wolfinger: JMP for Mixed Models

Ruth Hummel, Elizabeth A. Claassen, Russell D. Wolfinger JMP for Mixed Models

Price for Eshop: 1056 Kč (€ 42.2)

VAT 0% included

New

E-book delivered electronically online

E-Book information

SAS Institute

2021

PDF
How do I buy e-book?

262

978-1-951684-03-7

1-951684-03-6

Annotation

Discover the power of mixed models with JMP and JMP Pro.Mixed models are now the mainstream method of choice for analyzing experimental data. Why? They are arguably the most straightforward and powerful way to handle correlated observations in designed experiments. Reaching well beyond standard linear models, mixed models enable you to make accurate and precise inferences about your experiments and to gain deeper understanding of sources of signal and noise in the system under study. Well-formed fixed and random effects generalize well and help you make the best data-driven decisions. JMP for Mixed Models brings together two of the strongest traditions in SAS software: mixed models and JMP. JMP's groundbreaking philosophy of tight integration of statistics with dynamic graphics is an ideal milieu within which to learn and apply mixed models, also known as hierarchical linear or multilevel models. If you are a scientist or engineer, the methods described herein can revolutionize how you analyze experimental data without the need to write code.Inside you'll find a rich collection of examples and a step-by-step approach to mixed model mastery. Topics include:Learning how to appropriately recognize, set up, and interpret fixed and random effectsExtending analysis of variance (ANOVA) and linear regression to numerous mixed model designs Understanding how degrees of freedom work using Skeleton ANOVAAnalyzing randomized block, split-plot, longitudinal, and repeated measures designs Introducing more advanced methods such as spatial covariance and generalized linear mixed models Simulating mixed models to assess power and other important sampling characteristicsProviding a solid framework for understanding statistical modeling in generalImproving perspective on modern dilemmas around Bayesian methods, p-values, and causal inference

Ask question

You can ask us about this book and we'll send an answer to your e-mail.