Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem
Price for Eshop: 1766 Kč (€ 70.6)
VAT 0% included
New
E-book delivered electronically online
E-Book information
Annotation
In this volume, the authors demonstrate under some assumptions on $f^+$, $f^-$ that a solution to the classical Monge-Kantorovich problem of optimally rearranging the measure $\mu{^+}=f^+dx$ onto $\mu^-=f^-dy$ can be constructed by studying the $p$-Laplacian equation $- \mathrm{div}(\vert DU_p\vert^{p-2}Du_p)=f^+-f^-$ in the limit as $p\rightarrow\infty$. The idea is to show $u_p\rightarrow u$, where $u$ satisfies $\vert Du\vert\leq 1,-\mathrm{div}(aDu)=f^+-f^-$ for some density $a\geq0$, and then to build a flow by solving a nonautonomous ODE involving $a, Du, f^+$ and $f^-$.
Ask question
You can ask us about this book and we'll send an answer to your e-mail.