Cover of Michael David Weiner: Bosonic Construction of Vertex Operator Para-Algebras from Symplectic Affine Kac-Moody Algebras

Michael David Weiner Bosonic Construction of Vertex Operator Para-Algebras from Symplectic Affine Kac-Moody Algebras

Price for Eshop: 1882 Kč (€ 75.3)

VAT 0% included

New

E-book delivered electronically online

E-Book information

American Mathematical Society

PDF
How do I buy e-book?

106

978-1-4704-0233-4

1-4704-0233-5

Annotation

Inspired by mathematical structures found by theoretical physicists and by the desire to understand the "monstrous moonshine" of the Monster group, Borcherds, Frenkel, Lepowsky, and Meurman introduced the definition of vertex operator algebra (VOA). An important part of the theory of VOAs concerns their modules and intertwining operators between modules. Feingold, Frenkel, and Ries defined a structure, called a vertex operator para-algebra (VOPA), where a VOA, its modules and their intertwining operators are unified. In this work, for each $n \geq 1$, the author uses the bosonic construction (from a Weyl algebra) of four level $- 1/2$ irreducible representations of the symplectic affine Kac-Moody Lie algebra $C_n^{(1)}$. They define intertwining operators so that the direct sum of the four modules forms a VOPA. This work includes the bosonic analog of the fermionic construction of a vertex operator superalgebra from the four level 1 irreducible modules of type $D_n^{(1)}$ given by Feingold, Frenkel, and Ries. While they get only a VOPA when $n = 4$ using classical triality, the techniques in this work apply to any $n \geq 1$.

Ask question

You can ask us about this book and we'll send an answer to your e-mail.